Learning Time-Based Presence Probabilities
نویسندگان
چکیده
Many potential pervasive computing applications could use predictions of when a person will be at a certain place. Using a survey and GPS data from 34 participants in 11 households, we develop and test algorithms for predicting when a person will be at home or away. We show that our participants’ self-reported home/away schedules are not very accurate, and we introduce a probabilistic home/away schedule computed from observed GPS data. The computation includes smoothing and a soft schedule template. We show how the probabilistic schedule outperforms both the self-reported schedule and an algorithm based on driving time. We also show how to combine our algorithm with the best part of the drive time algorithm for a slight boost in performance.
منابع مشابه
An Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملThe social presence theory in distance education; the role of social presence in web-based educational environment
Dear editor-in-chief, The Future of Medical Education Journal The emergence of new theories of learning and education and a paradigm shift from being teacher-centered to student-centered alongside with advancement of novel communication technologies have set the grounds for modern human to use new methods of teaching-learning and free himself of the chains of time and place and keep on learning...
متن کاملLearning Expected Hitting Time Distance
Most distance metric learning (DML) approaches focus on learning a Mahalanobis metric for measuring distances between examples. However, for particular feature representations, e.g., histogram features like BOW and SPM, Mahalanobis metric could not model the correlations between these features well. In this work, we define a nonMahalanobis distance for histogram features, via Expected Hitting T...
متن کاملLearning Object Names in Real Time with Little Data
We present an online learning model of early cross-situational word learning which maps words to objects from context with relatively sparse input. The model operates by rewarding and penalizing probabilities of possible word-to-object mappings based on real-time observation, and using those probabilities to determine a lexicon. We integrate prosodic and gestural cues and allow the learner to e...
متن کاملMonetary Fundamental-Based Exchange Rate Model in Iran: Applying a MS-TVTP Approach
T he main purpose of this article is to analyze exchange rate behavior based on monetary fundamentals in the context of Iranian economy over the period 1990:2 to 2014:3. To do so, two monetary exchange rate models is investigated, the first by regarding interest rate differential as a monetary variable, and the second one regardless of interest rate differential as a monetary variabl...
متن کاملEfficient Similarity Derived from Kernel-Based Transition Probability
Semi-supervised learning effectively integrates labeled and unlabeled samples for classification, and most of the methods are founded on the pair-wise similarities between the samples. In this paper, we propose methods to construct similarities from the probabilistic viewpoint, whilst the similarities have so far been formulated in a heuristic manner such as by k-NN. We first propose the kernel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011